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An introduction to Project FORTE 

The Department for Business, Energy and Industrial Strategy (BEIS) 
has tasked Frazer-Nash Consultancy and its partner organisations to 
deliver the first phase of a programme of nuclear thermal hydraulics 
research and development. 

Phase 1 of the programme comprises two parts: 

 The specification and development of innovative thermal hydraulic 
modelling methods and tools; and 

 The specification of a new United Kingdom thermal hydraulics test 
facility. 

The work is intended to consider all future reactor technologies 
including Gen III+, small modular reactors and advanced reactor 
technologies. 

Our project partners 
The team is led by Frazer-Nash Consultancy and includes: 
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Executive Summary 

The design of Nuclear Power Plants involves complex geometry, such as fuel grid spacers and 

wire wrapped fuel assemblies.  The Finite Difference and Finite Volume CFD modelling 

techniques that are currently used to resolve the flow, turbulence and heat transfer in these areas 

require very large meshes that take a significant amount of time to generate and solve. 

This report describes novel and original research at the University of Manchester to extend the 

meshless incompressible Smoothed Particle Hydrodynamics (SPH) scheme to bounded 

domains, so that it can be applied to arbitrary geometries, as well as multi-phase and multiple 

continua flows. 

This has been achieved through the following innovative SPH developments: 

 Wall bounded arbitrary geometries: An iterative particle shifting methodology applicable 

to the Eulerian SPH scheme has been developed where the iterative scheme is only applied 

once, in the beginning of the simulation as a pre-processing step. The iterative shifting 

scheme comprises a two-step shifting approach that minimise the particle shifting distance. 

A polynomial field function of the same order as the kernel with a tolerance over a regular 

distribution of 10% must also be satisfied before the iteration procedure is considered to 

have converged.  The effectiveness of the iterative shifting scheme for arbitrary wall 

bounded domains has been demonstrated using a number of 3-D Poiseuille flow test cases 

in circular and non-circular cross-sections with close to second-order rate of convergence.  

 Higher-order boundary conditions: A necessity for higher order convergence rates is the 

use of a higher order wall boundary condition. Therefore, a novel high-order accurate 

extrapolation technique for the enforcement of wall and open boundaries to high-order 

accuracy with Eulerian ISPH was developed and validated. Fourth-order convergence was 

demonstrated for the 3-D spiral annular flow field smoothing kernel interpolations and third-

order spatial accuracy was demonstrated for full 3-D simulations of axial flow through a 

cylindrical annulus. 

 Arbitrary Lagrangian-Eulerian (ALE) formulation: A consistent ALE SPH scheme was 

developed in order to attain the Lagrangian characteristics of SPH to make it applicable to 

multi-phase flows. This ensures near isotropic particle spacing and therefore, near to 

theoretical convergence rates without an instability developing due to mass flux from the 

ALE formulation with no corrections needed to increase the accuracy of the SPH discrete 

operators.  The scheme has been validated for unbounded and bounded domains using the 

Taylor-Green vortices and inviscid vortex test cases, and shows large improvements in 

accuracy and stability compared to other ALE schemes. A spatial convergence study has 

also been performed where second- and fourth-order convergence rates have been 

demonstrated. These developments are directly applicable to, and have been developed to 

accommodate, interfacial boiling flows. 

These innovative SPH developments in terms of accuracy, convergence rates and arbitrary 

geometries mean that this meshless method could be applied to nuclear thermal hydraulics in 

realistic geometries. This has the potential to reduce the time and cost associated with nuclear 

thermal hydraulic analyses in the future. 
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1 Introduction 
The design of Nuclear Power Plants involves complex geometry, such as fuel grid spacers and 

wire wrapped fuel assemblies.  The Finite Difference and Finite Volume CFD modelling 

techniques that are currently used to resolve the flow, turbulence and heat transfer in these 

areas require very large meshes that take a significant amount of time to generate and solve. 

There are also limitations associated with these schemes especially when dealing with multi-

phase and multiple continua, boiling and phase change and in general free surface or interfacial 

flows. These types of flow exhibit large and non-linear deformations that are difficult to track 

spatially and temporarily.  

To that extent discretisation schemes using meshless computational points have been 

developed. These new meshless schemes do not require a fixed interconnected mesh to 

discretise the computational domain and node (or particle) interconnection is calculated using a 

characteristic length and a weighting function, and usually employ a Lagrangian description of 

motion. Smoothed Particle Hydrodynamics (SPH) is a new emerging meshless (or mesh-free) 

discretisation scheme capable of modelling highly non-linear deformations and multiphase flows 

with complex geometries.  

There are a number of SPH variants in computational fluid mechanics such as the strictly 

incompressible SPH (ISPH) and the weakly compressible SPH scheme. SPH has been 

extremely successful in a diverse field of science and engineering such as astrophysics [1], 

environmental flows [2] and lately nuclear decommissioning [3] to name just a few. 

Nevertheless, SPH has not been applied to nuclear thermal hydraulics with the exception of a 

few cases [4]. 

As with most meshless methods, SPH suffers from accuracy artefacts which have deemed the 

method not appropriate for modelling such flows. Recent studies have shown that modelling 

turbulence with Large Eddy Simulations (LES) within the SPH scheme, requires a minimum of 

30 particles to resolve the smallest eddies in the computational domain. This deems the method 

computationally expensive [5] and is mainly related to the low order of accuracy of the SPH 

scheme.  

The recent developments of high-order incompressible SPH within an Eulerian framework of 

Lind and Stansby [6] removed the error associated with non-uniformity of particle distribution, 

and demonstrated near ideal convergence characteristics with second and higher order 

convergence rates in unbounded periodic domains. In the nuclear sector, second or higher 

order convergence rate is essential for thermal hydraulic flows with turbulence and natural or 

forced convection, especially within an LES modelling framework. 

1.1 Objectives 

The aim of this work is to extend the incompressible SPH scheme to bounded domains, so that 

it can be applied to arbitrary geometries, as well as multi-phase and multiple continua flows, 

which are directly relevant for nuclear thermal hydraulics. 

This has been achieved through the following innovative SPH developments: 

 Wall bounded arbitrary geometries: Section 3 presents the methodology that has been 

developed to attain second- and high-order characteristics of the Eulerian ISPH scheme for 

any arbitrary 3-D geometry in a wall bounded domain. The method utilises diffusion-based 

particle shifting in an iterative manner at the beginning of the simulation to regularize the 

particle distribution to a near isotropic spacing using a two-step shifting approach. The 
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effectiveness of the iterative procedure is tested using a number of 3-D Poiseuille flow test 

cases in circular and non-circular cross-sections. 

 Higher-order boundary conditions: Section 4 details the novel high-order accurate mixed 

finite difference extrapolation technique that has been developed for wall and open 

boundary conditions, and shows that the SPH method is capable of higher than second-

order accuracy for 3-D flow simulations involving boundaries. 

 Arbitrary Lagrangian-Eulerian (ALE) formulation: Section 5 discusses the ALE 

formulation that has been developed with multi-phase flows in mind, where the arbitrary 

velocity is estimated in such a way that guarantees uniform particle concentration in the 

domain. Near to theoretical convergence rates provided by the adopted kernel function are 

achieved ensuring that particle concentration remains uniform during the simulation.  The 

scheme is validated for unbounded and bounded domains using the Taylor-Green vortices 

and inviscid vortex test cases. 
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2 SPH Discretisation Scheme 

2.1 SPH operators 

The SPH operators employed in this work are similar to Xu et al. [7] and are as follows. The 

following form of the gradient operator is used: 

   

n

j

ijjiji V    (1) 

where i and j is the interpolating particle and its neighbours respectively for a field function , 

and V is the volume particle. The smoothing kernel Wij is taken to be either the quintic spline [8] 

with h = 1.3Δx or the super-Gaussian [9] fourth order kernel (G4) with h = 2.0Δx.  

The Laplacian operator employed is that suggested by Morris et al. [8] and is referred to as the 

Morris operator henceforth  

  
 

2

n
j i j ij ij

iji
j j ij

m

r

  




 
  

x
u u   2) 

where u is the velocity vector, μ is the dynamic viscosity, m and  are the mass and density of 

the particle respectively, and rij is the magnitude of the distance. The Laplacian operator was 

chosen with computational efficiency in mind. 

2.2 Eulerian ISPH formulation 

Similar to the Eulerian ISPH formulation of Lind and Stansby [6], incompressibility is enforced 

using the projection method of Cummins and Rudman [10] ensuring a divergence-free velocity 

field. However, the temporal integration scheme is lower than that of Lind and Stansby [6], 

which is formally second-order. 

An intermediate velocity is calculated using a forward Euler scheme, based on the viscous term 

using the Morris operator and the advection term in the absence of a pressure gradient as  

  * 2n n n n

i i i i i t      u u u u u g  3)

where g denotes the external forces such as gravity and the superscript (*) denotes the 

intermediate step. 

The pressure at time n + 1 is obtained from the intermediate velocity via solution of the pressure 

Poisson equation that reads 

 1 *1 1n

i

i

p
t

 
      

 
u  4) 

where the Morris operator is used to discretize the left hand side of Equation 4. 

Finally, the velocity at time n + 1 is obtained by the projection of the intermediate velocity onto 

the divergence free space, 

 tpn
ii

n
i 








  1*1 1


uu  5)

Note that, if the particle distribution is regular (uniform), the smoothing error is of O (h2) for the 

quintic and O (h4) for the G4 kernel as demonstrated by Lind and Stansby [6]. However, in 

arbitrary bounded domains a regular Cartesian particle distribution is not feasible. 
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3 SPH for Arbitrary Geometries 
The ISPH scheme, based on finding a divergence-free velocity field using a projection method, 

is known to have noise-free pressures and kinematics for internal and free-surface flows. 

However, the non-uniformity of particles restricts the accuracy and, consequently, the 

convergence of the solution to lower than the theoretical second order convergence in 

smoothing length [11].  

The recent developments of high-order incompressible SPH within an Eulerian framework [6] 

removed the error associated with non-uniformity of particle distribution, and demonstrated near 

ideal convergence characteristics with second and higher order convergence rates. Conversely, 

the requirement for uniform particle distributions has thus far restricted the Eulerian scheme to 

2-D unbounded or simple rectangular bounded domains [11] with limited applicability to other 

than idealised test cases. In the nuclear sector, arbitrary geometries are a common occurrence 

and second or higher order convergence rate is essential for thermal hydraulic flows with 

turbulence and forced convection, especially within an LES modelling framework.  

Regularisation of particle distribution has been an active area of research in SPH. Early, 

approaches such as XSPH [12] use an additional velocity term based on an SPH interpolation  

to calculate the particle position. This approach is one of the first particle regularisation 

approaches to emerge in SPH and has been extensively applied to Weakly Compressible SPH 

(WCSPH). Since then numerous techniques have been suggested. In the past decade, Xu et al. 

[7] applied a shifting scheme in ISPH based on the geometric distance of neighbouring particles 

followed by a correction of the hydrodynamic variables.  

A similar methodology was used by Lind et al. [13] by replacing the geometric shifting criterion 

with Fick’s law of diffusion. The aforementioned particle shifting correction prevented irregular 

particle distributions by diffusing particles from areas of high concentration to low and vice 

versa, reducing non-uniformity of particle position. Further, these approaches are applicable to 

free surface and interfacial flows [13, 14] as shifting is decoupled from the solution of the 

governing equations and applied only at the end of the time integration step. Additional shifting 

approaches have emerged lately embedded within an ALE-SPH formulation such as the work of 

Oger et al. [15] or by creating a potential force by using an advection diffusion equation [16]. 

Further, a remapping of SPH particles to a Cartesian mesh has been proposed by Chaniotis et 

al. [17]. 

Recently Vacondio and Rogers [18] used a variant of the Fickian shifting of Lind et al. [13] in an 

iterative manner within WCSPH to further improve the spatial accuracy of the SPH gradient 

calculations using a predefined threshold based on the derivative of the zeroth-order moment. 

The iterative procedure is applied at each time step if the interpolation error is higher than a pre-

defined threshold. 

An iterative approach similar to Vacondio and Rogers [18] is proposed in order to attain the 

second- and high-order characteristics of the Eulerian ISPH for arbitrary 3-D geometries in a 

bounded domain. The method utilises the diffusion-based particle shifting of Lind et al. [13] in an 

iterative manner at the beginning of the simulation to regularize the particle distribution to a near 

isotropic spacing. Upon sufficient minimization of the SPH discretisation error, the iterative 

procedure is terminated and the particle position is fixed in space for the remainder of the 

simulation. Unlike Vacondio and Rogers [18], the iterative procedure is only applied once for 

Eulerian SPH, at the beginning of the simulation as pre-processing, and there is no need for the 

iterative procedure to be applied in the temporal integration. 
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3.1 Iterative shifting procedure 

Lind and Stansby [6] demonstrated that Eulerian SPH offers improvements in accuracy and 

convergence for a regular isotropic particle distribution arranged in a Cartesian grid by removing 

the first order error associated with particle anisotropy in a sufficiently smooth kernel near the 

kernel boundary. However, the applicability of the scheme to 3-D arbitrary wall bounded 

geometries is not always practical, for instance in domains with curved walls and sharp corners. 

The wall Boundary Condition (BC) of Adami et al. [19] has been used to discretise the arbitrary 

geometries due to the straightforwardness and flexibility of representing wall BCs, however, this 

is a lower order method.      

3.1.1 Shifting mechanism 

Particle regulation schemes improve the accuracy by reducing the spatial anisotropy of particles 

by a shifting distance of δxi 

 1 1

,

n n

s i i i  x x x  (6)

where the subscript s denotes the new shifted position. In the diffusion-based scheme [13], the 

shifting distance is a function of the gradient of the concentration gradient such as  

 2

i iAh C   x  (7)

where A is a problem dependent constant and taken equal to 0.25 and Ci  is simply the 

derivative of the zeroth moment. By using this procedure at every time step the Ci is reduced, 

but not necessarily minimised, so that δxi → 0. Vacondio and Rogers [18] recognised that by 

applying the shifting algorithm in an iterative manner could lead to minimisation of the Ci and 

therefore partially remove the first order error associated with particle anisotropy. Herein, we 

propose a similar iterative approach based on the diffusion-based scheme [13], where the 

shifting distance is calculated using Equation 7. 

Unlike Vacondio and Rogers [18], the iterative procedure is applied only at the beginning of the 

simulation in a pre-processing manner since the particle position of the Eulerian particles is 

fixed in space leading to lower computational cost than the equivalent Lagrangian scheme.  

Herein, a two-step shifting procedure is used that involves different kernels to minimise δxi and 

the error associated with the derivative of the kernel. Firstly, particles are shifted using 

Equations 6 and 7 using a lower order kernel. At this step, the aim is to shift particles such that 

δxi → 0. As this is a lower order kernel (different to the kernel used for the interpolations in the 

time integration), the Ci error with respect to the kernel used in the simulation is large.  

For lower order kernels such as the quadratic kernel, the derivative of the kernel function is 

non-zero at the origin and does not exhibit an extremum in its gradient (while it is discontinuous 

at its origin). The quadratic kernel in the usual notation reads  

   23 3 3
,

16 4 4
dW r h a q q
 

   
 

 (8)

with αd = 5/(4πh3) in 3-D.  Figure 1 shows the quadratic kernel and its derivative.  
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Figure 1: Quadratic smoothing function and its first derivative 

As noted by Monaghan [20] and Swegle et al. [21] such kernels eliminate the tensile instability 

which is associated with kernels that exhibit an extremum in their gradient and zero kernel 

gradient at the origin. In highly random particle domains, the initial particle distribution will 

exhibit particle clustering within the unstable regime of such kernel derivatives resulting in 

significant error in the kernel gradient calculation, and thus poor accuracy and convergence of 

the SPH interpolation. Using the quintic kernel in the diffusion-based scheme particle clumping 

is eliminated and a near isotropic particle distribution can be recovered as δxi → 0. After 

numerical experiments, it was found that a smoothing length of h = 1.3 Δx is sufficient.     

In the second step, the kernel function used for the interpolations in the SPH simulation is used 

to minimise the Ci. As noted before the quadratic kernel is a lower order kernel and its kernel 

derivative will exhibit a significant larger error that the quintic and G4 kernels. Therefore, it is 

necessary to use the diffusion-based shifting to further reduce the kernel gradient error of the 

near isotropic distribution of “step one” by targeting to minimise Ci in a similar manner to 

Vacondio and Rogers [18]. Note that in a continuum domain the SPH kernel derivative 

approximation of a field function f can be written as  


 

 

 

2
2

( ) ( )

( )

1
( )

2

...

i i ij jSPH
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i i j j

ij

i i j j

n

f f W dx

W
f dx

W
f dx

O h







   


  




  











x x

x x x
x

x x x
x

 (9)

The first term on the right hand side of Equation 9 is simply the kernel gradient (or Ci), 

whereas the second and subsequent terms show the error associated with the ability of the 

kernel derivative to approximate polynomials up to n order [22]. Consequently, in order to 

reduce the SPH interpolation error using an iterative shifting procedure, one must examine both 

terms with the appropriate kernels.  

3.1.2 Convergence of iterative shifting mechanism  

In the first step of the iterative shifting procedure, the quadratic kernel shifts particles by a 

shifting distance of δxi at each iteration towards an isotropic distribution. As the target of this 

first step is not the accuracy of the SPH interpolation itself but the distribution of particles in 

space, a pre-defined threshold can be set to end the first step of the iterative procedure. After 

numerical experiments, it was found that a maximum threshold of δxmax = max|| δxi || of 10-6 was 
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sufficiently low for Ci to be approximated with sufficient accuracy for the second step of the 

algorithm.  

Further, it was observed that by setting the threshold of δxmax two orders of magnitude higher 

than the recommended (10-4), there would only be a small number of particles which would 

have a δxi near this maximum threshold. This suggests that higher thresholds could be used, 

which consecutively would reduce the computational cost of the iterative procedure.   

The purpose of the second step of the algorithm is to reduce the error of the SPH interpolation. 

Therefore, one must ensure that a sufficiently low Ci can be achieved. Vacondio and Rogers 

[18] set a maximum threshold at which the iterative procedure is initiated and suggest that a 

concentration gradient of the range 10-1 to 10-2 is sufficient to produce close to second order 

rate of convergence. This is in line with our findings using a second order accurate kernel 

(quintic kernel) with a δxmax = 10-4 and an upper concentration gradient of Cmax = 10-2. Further, 

in our numerical experiments it was found that a Cmax = 10-4 is necessary to achieve a 

convergence rate of the order of three or higher. 

Nevertheless, one must also ensure that in Equation 9, the second and following terms also 

carry a small error. Thus, a test function of order equal to the order of the kernel is used to 

check the error difference of the regular to shifted particle. In this report, f(x) = x2 and f(x) = x4 is 

simply used for the quintic and Gaussian G4 respectively. A second threshold of 10% error 

tolerance from the regular Cartesian particle distribution must also be satisfied for the second 

step to be terminated in this pre-processing stage and for the SPH simulation to start. 

The iterative shifting scheme presented herein has been implemented in the ISPH3D MPI solver 

capable of running with tens of thousands of processors and simulate hundreds of millions of 

particles as demonstrated by Guo et al. [23].      

3.2 Results 

In this section, a number of 3-D Poiseuille flow test cases in circular and non-circular cross-

sections are presented in order to demonstrate the effectiveness of the iterative shifting 

procedure. The analytical solutions for viscous flow through pipes of various cross-sections can 

be found at Bazant [24]. 

3.2.1 Poiseuille flow in a rectangular channel 

A 3-D flow through a square rectangular channel with sides of 1.1 m and length of 5.0 m is 

simulated with a Reynolds number of Re = 30 and dynamic viscosity of μ = 10-2 Pa s. A number 

of different particle resolutions have been used with Δx = 0.2, 0.1, 0.05 and 0.025 m to 

demonstrate the convergence characteristics. Two kernels, the quintic and G4 have been used 

to simulate the flow through the rectangular channel.  

The initial regular particle position is disturbed by a random distance of 0.8Δx in all directions. A 

cross-sectional slice of the 3-D domain with Δx = 0.1 m is shown in Figure 2(a). Note that the 

wall boundary particles have not been disturbed and are regularly distributed. At the end of the 

simulation t = 20.0 sec, the same cross-sectional slice of the 3-D domain is shown in Figure 2(b) 

with the 3-D domain shown in Figure 3. These figures demonstrate that the initial random 

particle distribution has been shifted and a regular Cartesian distribution has been recovered.  
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(a) (b) 

Figure 2: Cross-sectional slice of the 3-D domain with (a) the initial random particle 

distribution and (b) fluid particles coloured by normalised velocity of the shifted particle 

distribution for a rectangular channel with Δx = 0.1 m 

To demonstrate the effectiveness of the iterative shifting algorithm for this test case, the shifting 

and gradient concentration threshold was lowered to 10-8. Figure 4 and Figure 5 show the decay 

of the δxi and Ci for the quintic and G4 kernel respectively. Notably, the quintic kernel requires 

almost three times more iterations to achieve the lower Ci of 10-8, although the kernel support 

and smoothing size of the G4 is considerably larger. This numerical experiment demonstrates 

the ability and effectiveness of the high order G4 kernel to deal with near isotropic particle 

distributions.  

Further, the convergence characteristics for the L2 error norm in velocity is shown in Figure 10 

and Figure 11 for the quintic and G4 kernel respectively, with a similar rate of convergence of 

1.9. Given the lower order of wall boundary conditions and lower than second order time 

integration scheme used herein, the rate of convergence is considered satisfactory. 

 

Figure 3: The fluid 3-D domain with the normalised velocity of the shifted particle 

distribution for a rectangular channel with Δx = 0.1 m 
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Figure 4: Evolution of particle concentration and shifting distance by the iterative shifting 

procedure by combining the quadratic and the quintic kernels 

 

 

Figure 5: Evolution of particle concentration and shifting distance by the iterative shifting 

procedure by combining the quadratic and the G4 kernels 

Quadratic 
kernel 

Quintic 
kernel 

Quadratic 
kernel 

G4 kernel 
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3.2.2 Poiseuille flow in an equilateral triangular channel  

Similar to the Poiseuille flow in a rectangular channel, an equilateral triangular channel with 

sides of 1.0 m and length of 5.0 m is simulated with a Reynolds number of Re = 30 and dynamic 

viscosity of μ = 10-2 Pa.s. Three different particle resolutions have been used with Δx = 0.2, 0.1 

and 0.05 m. The quadratic kernel has been used in this test case.  

 
Figure 6: Cross-sectional slice of the fluid 3-D domain, normalised velocity of the shifted 

particle distribution for an equilateral triangular channel with Δx = 0.1m 

As before, the initial particle distribution was random with 0.8Δx disturbance in all directions. 

Figure 6 shows the cross-sectional slice of the fluid 3-D domain at t = 20.0 sec with the 

thresholds of δxmax = 10-4 and Cmax = 10-2. The fluid 3-D domain with the normalised velocity of 

the shifted particle distribution is shown in Figure 7.  

Similar to the flow in a rectangular channel, particles have recovered a regular near-Cartesian 

particle distribution. Furthermore, the L2 error norm in the horizontal velocity is shown in Figure 

10 with a rate of convergence of 1.8. 

 
Figure 7: The fluid 3-D domain with the normalised velocity of the shifted particle 

distribution for an equilateral triangular channel with Δx = 0.1 m 
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3.2.3 Hagen-Poiseuille flow 

The classical Hagen-Poiseuille flow with a radius r = 0.5 m and length of 5.0 m is simulated with 

a Reynolds number of Re = 30 and dynamic viscosity of μ = 10-2 Pa s. Three different particle 

resolutions have been used with Δx = 0.1, 0.05 and 0.025 m with the G4 kernel. Figure 8 shows 

the particle distribution after the end of the simulation at t = 20.0 sec with the thresholds of 

δxmax = 10-6 and Cmax = 10-4, whereas Figure 9 shows the fluid 3-D domain with the normalised 

velocity for the shifted particle distribution. Although the distribution is not fully regular as in a 

Cartesian grid, the fluid particles follow the radial distribution of the wall boundary particles and 

the order of convergence remains close to 1.7 as shown in Figure 11. 

 

Figure 8: Cross-sectional slice of the fluid 3-D domain, normalised velocity of the shifted 

particle distribution for a circular channel with Δx = 0.1 m 

 

 

 

Figure 9: The fluid 3-D domain with the normalised velocity of the shifted particle 

distribution for the Hagen-Poiseuille flow with Δx = 0.1 m 
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Figure 10: L2 error norm in the horizontal velocity for the rectangular and the triangular 

channel using the Quinitic kernel with the wall boundary conditions of Adami et al. [19] 

 

Figure 11: L2 error norm in the horizontal velocity for the rectangular and the circular 

channel using the G4 kernel with the wall boundary conditions of Adami et al. [19] 

In the above 3-D test cases, the effectiveness of the iterative shifting mechanism to recover 

near isotropic particle distribution with satisfactory convergence has been demonstrated. The 

numerical experiments show that the initial random distribution tends to follow the wall boundary 

particle discretisation as with the 3-D Hagen-Poiseuille flow. These results are in agreement 

with the findings of Vacondio and Rogers [18]. The use of the Quadratic kernel with a second 

convergence criteria avoided the error associated with particle clamping in the shifted domain 

and ensures that the error in the kernel interpolation remains low after the shifting procedure. 
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4 Higher-order Boundary Conditions 

4.1 Introduction 

A variety of wall boundary models are available for SPH ranging from dummy particle 

techniques [19], mirror wall boundaries [8], fictitious stencil boundary models [25], repulsive 

force boundaries [26] to semi-analytical wall boundary models [27]. However, these methods all 

suffer from currently being limited to second-order spatial accuracy. The afore-mentioned 

models can be split into two major categories (when excluding repulsive force methods): 

1. Extensive models: These extend the computational domain into the boundary domain 

such that the smoothing kernel support for fluid particles near the boundary is filled with 

boundary particles. The properties of these boundary particles are assigned according 

to fluid properties near the wall to affect Dirichlet and/or Neumann boundary conditions. 

2. Renormalisation techniques: These account for kernel truncation near boundaries by 

discretising the boundary into a number of surface particles and incorporating a 

normalisation factor that is designed to complete the support of kernel interpolations 

without using boundary particles. Dirichlet and Neumann BCs can also be enforced via 

this group of boundary models. 

Takeda et al. [28] outlined a technique for enforcing Dirichlet velocity BCs for walls to second-

order accuracy. This technique was intended for the extensive group of SPH wall boundary 

models. Other extensive models [19] and re-normalisation techniques [27] have also been 

shown to be near second-order accurate in space. However, to date no model has been shown 

to be higher-order accurate and no higher-order accurate SPH simulations have been 

demonstrated. 

This is understandable given that the Lagrangian SPH formulation is at best second-order 

accurate [11] and its accuracy suffers greatly when the particle distribution becomes disordered, 

an unavoidable fact even when corrective particle shifting techniques (see [29] and [30]) are 

utilised. 

The advent of Eulerian SPH ([6], [31]) and the fact that the method was shown to be capable of 

higher-order accuracy prompted the development of high-order accurate boundary conditions 

[31] which is the focus of this work. In a Eulerian frame, particle positions remain fixed in space 

and the problem of maintaining a uniform particle distribution is eliminated. Thus as long as the 

computational domain is discretised into a uniformly distributed set of particles with appropriate 

geometrically scaled volumes high-order convergence can be achieved. 

4.2 Second- and high-order accuracy in SPH 

A number of researchers (e.g. [32], [33] and [6]) have shown that the accuracy of the smoothing 

kernel interpolations can be improved to higher-order accuracy by re-normalising the smoothing 

kernel function such that even order error terms in the SPH approximation are removed. The 

SPH interpolation error can be written as 



2
' '' 2

3
''' 3 4

2!

( )
3!

i i i i

i

h
F F WdV h F qWdV F q WdV

h
F q WdV O h

  

 

  



 (10)

The odd-order (in h) error terms in Equation 10 cancel out due to the symmetry of smoothing 

kernel functions. However, the even order terms must be removed to attain higher-order 
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accuracy. Creation of fourth-order accurate kernel functions may be accomplished as shown by 

Lind and Stansby [6] via deriving a new kernel function.  This kernel function may be written as 

WO4(q)=(A-Bq2)W(q), where WO4 is a fourth-order accurate version of the original kernel 

function, q=r/h where r is the particle spacing and W is the original kernel function. Constants 

A and B can be evaluated by solving the following equalities 


2 2

2

( ) 0

( ) 1

A Bq q WdV

A Bq WdV

 

 





 (11)

This leads to elimination of the O(h2) term in Equation 10 thereby making the approximation 

fourth-order accurate. This procedure was used in this work to create a new compactly 

supported fourth-order accurate kernel function based on the fifth-order polynomial Wendland 

function [34]. It must be noted that in order to achieve higher-order accuracy with a higher-order 

accurate kernel function, kernel correction techniques such as [35] may not be used as they 

render it asymmetric which brings the odd order error terms back into the equation since they do 

not cancel out. 

4.3 High-order accurate MFD boundary conditions 

In this section, the high-order accurate Mixed Finite Difference (MFD) extrapolation technique is 

presented. 

 
Figure 12: MFD wall boundary condition schematic for a flat surface 

For the computational stencil shown in Figure 12, b represents the boundary domain, f 

represents the fluid domain and  represents the boundary surface (which can be a wall or an 

open boundary). The velocities of fluid particles 1 and 2, u1 and u2, are known from solving the 

governing equations and so is the velocity of the surface particle w (uw) which is prescribed for 

the case of wall surfaces with known velocities. For Eulerian SPH, it can also be ensured that 

particles in the stencil are arranged on a straight line and distributed uniformly along the stencil. 

Therefore, a combination of forward and backward finite difference interpolations can be utilised 

to affect the desired boundary conditions as detailed in [31]. Using this MFD technique, the 

following third-order accurate extrapolation can be performed to evaluate the boundary particle 

velocities 


1 w

b w b w

1w

2
3b w b w 1w 2 1 w

2

1w

2
( )

2

n n

n n

x
x

x x x
O

x



  

    
   

  
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where  is the normal distance from the boundary particle to the wall surface. This 

extrapolation obeys the Dirichlet BC on the wall (u=uw) and also enforces a third-order accurate 

Dirichlet BC for wall boundary particles. For open boundaries, the wall particle in Figure 12 

represents the fluid particle lying on the opening surface and the same procedure can be used 

to extrapolate the fluid velocities into the open boundary domain thereby setting the velocity 

values for opening boundary particles. For the third-order MFD wall and open BC models only 

two fluid particles are required. However, the fourth-order accurate variant of the MFD model 

requires three particles. The fourth-order accurate formulation reads  



 

3 w2
1

3 1b w
2 wb w

b w1w

b w1w
3 2 1 w

1w

4

113
3

3 2 6

5
2

2 2

3 3
6

( ),

n
n

n

n

x

xx

xx

x

O 

 
    

 
  
        
  
      
  

 

u uu
u

u u
u uu u

u u u u

 (13)

where u3 is the velocity of the third fluid particle from the wall. 

Higher-order accurate variants can be readily built using the methodology in [31] however for 

each increment in order of accuracy information from an additional fluid particle is required.  

Implementing this technique requires that the boundary surface is first discretised into a 

uniformly distributed set of wall particles w, their uniformity is necessary to ensure that the 

accuracy of higher-order kernel interpolations is maintained. Then, the surface particles are 

used to generate the required number of fluid particles (two for the third-order variant or three 

for the fourth-order variant). These fluid particles must lie on the normal vector emanating from 

the wall particle nw and also be uniformly spaced. According to the desired value for h/r a 

number of boundary particles must be generated to complete the support of the kernel function 

and also lie along nw. 

This procedure is repeated for all surface particles (lying on the wall surface or open boundary). 

Fluid particles not involved in the stencil may be distributed in a different manner; however, the 

volumes and positions of fluid particles not required for the stencil must still be uniform enough 

to achieve the required level of accuracy. Figure 13 illustrates the MFD extrapolation stencil as 

discretised on curved surfaces. 

 

Figure 13: MFD wall boundary stencil near curved surfaces. The yellow curved volumes 

represent particle volumes in one stencil 
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For curved surfaces, the stencil requirements mean that particles in a given MFD stencil lying 

on a curved surface will inevitably have different volumes. While it is known that a uniform 

particle distribution is required to attain high-order accurate SPH interpolations [6], the results in 

this report show that higher-order accuracy is achievable even for non-uniform particle sizes 

provided the distribution is not purely random and that particle volumes accurately represent 

their geometric arrangement.  

For the time being, the MFD boundary model has only been applied to flat or curved surfaces 

for which a uniform set of stencils can be generated, i.e. not surfaces involving sharp corners.  

4.4 Convergence analysis 

In this section, the high-order accurate MFD boundary conditions are validated and 

convergence of the Eulerian ISPH technique with the new boundary extrapolations is 

investigated. 

4.4.1 Accuracy of kernel interpolations 

In order to validate the accuracy of the velocity extrapolation to the wall and open boundary 

particles, the case of 3-D flow through a cylindrical annulus was used. Figure 14 shows the 

computational domain used for this study highlighting the fluid, wall and open domains. For 

these tests, the analytical solution of spiral flow through a cylindrical annulus was used.  

In the domain shown in Figure 14, an external body force drives the fluid axially through the 

annular channel in the y-direction while the rotation of the inner and outer cylinders creates a 

secondary spiral flow. This complex 3-D flow was chosen to evaluate the ability of the wall 

boundary conditions to capture a fully 3-D flow with spatially varying velocity components in 

each Cartesian direction to fourth-order accuracy.  

  

Figure 14: Cross-sectional schematic of computational domain 

The radius of the inner cylinder is r1 = 1.5 m with a constant angular velocity of 1 = 0.1 rad/s 

and the radius of the outer cylinder is r2 = 2 m rotating in the same counter-clockwise direction 

with a constant angular velocity of 2 = 0.025 rad/s in the x - z plane. This results in a maximum 

tangential velocity for the inner cylinder of 0.15 m/s. Further, the external body force was 

applied to the y-direction with ay = 0.095868 m/s2 such that the maximum axial flow velocity was 

approximately 0.3 m/s.  

Open 
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The Reynolds numbers for the spiral and axial velocity were ReSpiral = 7.5 and Reaxial = 15 

respectively, based on the channel width w = 0.5 m as a characteristic length and the maximum 

tangential and axial velocities. 

The domain was discretised using a radially distributed set of particles as shown in Figure 15, 

which includes the fluid and wall boundary particles. First the surface of the inner cylinder was 

discretised into a uniformly distributed set of particles with =2r1/y where r1 is the inner 

cylinder radius and y is the particle spacing along the annulus’ axial direction. The surface 

particles were then extruded using a uniform radial spacing r along the wall normal vector to 

generate fluid and wall boundary particles lying along each surface particles’ normal vector.  

The particle spacing along the axial direction was set to y=r meaning that although r and y 

is uniform there is quite a large variation of particle arc lengths s along the radial direction for 

each ring of particles. The particles used to discretise the inner surface have s1 = r1, while 

particles used to discretise the outer cylinder surface have an arc length of s2 = r2 For this 

test r1=1.5 m while r2 = 2 m meaning that V1/V2 = 0.75 where V1 and V2 are the volumes of 

particles lying on r1 and r2 respectively.  

For particles used to discretise the wall domain the disparity in volume is even greater; the ratio 

between the minimum and maximum particle volumes used in this study for the lowest 

resolution test with r= w/4 is Vmin/Vmax=1/3 based on the smallest inner wall boundary particle 

and the largest outer wall boundary particle. Three different particle spacings (resolutions) were 

used for this study; r = w/4, r = w/6 and r = w/8.  

  

 

Figure 15: Cross-sectional views of the computational domain highlighting the Analytical 

velocity distribution for r=w/4 

y 

x 
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First, convergence of the smoothing kernel interpolation is assessed by assigning the analytical 

steady-state solution for velocity to each particle in the domain via  

    2 2 2 2 2
2 2 1

2 1

ln( / )
( )
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a r r
v r r r r r

r r
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 
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 
  
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   
 

  
   

 
 

 (14)

where vaxial is the axial flow velocity and utan is the tangential flow velocity w.r.t. the origin of the 

cylinders which is coincident for both inner and outer cylinders, = 1 kg/m3 and = 0.01 Pa.s. 

Figure 15 shows the analytical velocity fields assigned to particles in the computational domain. 

After assigning velocities to all particles in the fluid and boundary domains a kernel interpolation 

is performed to evaluate the velocity vector for each fluid particle as  



( )f b

i j ij ij

j

W V

  

 u u

U

 (15)

where uj for this test is the analytically prescribed velocity field. The error in the kernel 

interpolation is then quantified as 



2

2

1 analytical inorm

f analyticali fluid

U U
L

N U


 
  

 
 

  (16)

where Nf is the number of fluid particles,  

 2 2
tan( )i analytical i axial iU v u    

 2 2 2( )i i i iU u v w    (17)

and ui, vi and wi are the interpolated velocities in the x, y and z Cartesian coordinates. 

Figure 16 shows the L2
norm

 error for the cases where the analytical velocity profile was used to 

evaluate the boundary particle velocities.  

In these tests different values for the smoothing length were used ranging from h = 2r to 

h = 4r. The observed order of convergence for these tests was roughly 0.5. Since the 

analytical solution is prescribed throughout the computational domain the only source of error is 

the smoothing kernel interpolation error which for the interpolated functions, Equation 14, has 

reached the limiting SPH discretisation error discussed by Quinlan et. al. [11]. 

As shown by Quinlan et al. [11] the SPH interpolation is O(r/h) where  is the kernel 

smoothness which is defined as the number of times the kernel is differentiable while remaining 

equal to zero at the edges of its support radius. The kernel used for these tests has a 

smoothness of = 7 hence the error is expected to be O(r/h)9.  

Figure 17 shows the error for interpolations performed using h = 2r, 3r, 4r and 6r with a 

fixed r = w/8. The plot shows that the observed spatial accuracy of the interpolations is 

approximately O(r/h)9.67 which is in agreement with the expected convergence rate of 9. 
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Figure 16: L2
norm error vs radial particle spacing for the convergence study with analytical 

boundary velocities 

 

Figure 17: L2
norm error vs h for the convergence study with analytical boundary velocities 

for a particle spacing of r = w/8 

Extrapolating the velocity into the boundary domains will introduce additional error to the flow 

field in the boundary domains thereby increasing the global error, if this error is high enough the 

global error will be greater than the limiting SPH discretisation error. 

Hence, another set of tests is performed to assess whether convergence can be achieved if the 

boundary velocities were extrapolated from the fluid particles using Equation 13 and then the 

fluid particle velocities were interpolated using Equation 15. 
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Figure 18 shows the convergence study results for the case with extrapolated boundary 

velocities. It may be noted that for the test with h = 2r the solution has reached the limiting 

discretisation error limit. However, for the tests with h = 3r and h = 4r the error is converging 

following an approximately fourth-order trend, the exact convergence rates are 4.484 and 4.495, 

respectively. 

These results show that SPH can be used to attain fourth-order accurate interpolations for wall 

bounded problems provided that fourth-order accurate boundary conditions are utilised and a 

fourth-order accurate kernel function. Based on these results, Section 4.4.2 demonstrates third-

order convergence for full 3-D flow simulations with ISPH using the third-order variants of the 

MFD higher-order wall and open boundary conditions. 

 

Figure 18: L2
norm error vs radial particle spacing for the convergence study with 

extrapolated boundary velocities 

4.4.2 Convergence study for a 3-D axial flow through an annulus  

For these studies, the same annular computational domain shown in Figure 14 is used. 

However, for the full 3-D simulations only the axial component of the flow is simulated with the 

velocity of the inner and outer cylinder walls being set to u = (0, 0, 0) m/s.  

Time integration of the ISPH algorithm is performed via the low-order projection method. Since 

the flow is axial and driven by an external body force, in-lieu of an axial pressure gradient, the 

pressures for the wall and open boundaries may be set to zero. The velocities however are 

extrapolated following the third-order MFD extrapolation in Equation 12. 

The axial flow is started from the steady state analytical solution and the external body force is 

a = 0.025 m/s2 while the fluid properties are  = 1 kg/m3 and  = 0.01 Pa.s. The Reynolds 

number for this test was approximately Re = 3.9 based on the maximum flow velocity of 

0.0783 m/s and w = 0.5 m. The flow is simulated for t = 20 s for all cases.  

At this point in time the L2
norm error is virtually constant meaning that the numerical solution has 

reached a steady state. Three particle spacings (resolutions) were used for this study namely 

r = w/3, r = w/5 and r = w/6 with h = 4r. The time step was set using t = Cuh/Umax where 

y = 15.957x4.4839
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Cu = 0.05 and Umax is the maximum fluid velocity. A low value for the Courant constant Cu was 

used to lower the temporal integration error and allow the observation of spatial convergence.  

Figure 19 shows the results of the error analysis performed using Equation 16 and the steady 

state solution for the three resolutions simulated with third-order extrapolated boundary 

velocities. 

The convergence rate is approximately 3.01 for this test showing that the MFD high-order 

extrapolation is indeed capable of producing spatially third-order accurate ISPH simulations 

even when using lower-order accuracy time integration schemes provided that the time step 

size is sufficiently small.  

 

Figure 19: L2
norm error vs radial particle spacing for the convergence study performed 

with three full 3-D simulations and third-order extrapolated boundary velocities 
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5 Arbitrary Lagrangian-Eulerian SPH 

5.1 Introduction 

The effect on stability and accuracy of anisotropic particle distributions and formation of 

coherent particle structures is well documented in smoothed particle hydrodynamics (SPH) [11, 

36-39] and has a severe impact on the convergence characteristics of the scheme. 

Several variants of the original SPH scheme [40] have been proposed to improve the accuracy 

of the solution by using kernel corrections which ensure zeroth- and first-order consistency for 

anisotropic particle distribution [36, 38]. However, the Lagrangian motion of the particles 

unavoidably generates coherent structures that follow the streamlines (if accurate enough). The 

recent developments of the diffusion-based particle shifting [7, 37, 41] acts to maintain a 

homogeneous particle distribution and improve the accuracy of the approximations.  

Initially developed for incompressible SPH, the Fickian shifting approach has been very 

successful on single and multi-phase flows in weakly compressible SPH (WCSPH), examples 

include Vacondio et al. [42] in single phase flows, Mokos et al. [43] and Fourtakas and Rogers 

[44] in multi-phase flows and recently Sun et al. [45]. Sun et al. [46] added advection terms to 

the momentum and density conservation equations, without solving for the temporal volume 

evolution. 

The conservation and consistency of the scheme can be maintained using an Arbitrary 

Lagrangian-Eulerian scheme in SPH formalism (ALE-SPH) as outlined by Vila [47]. Recently 

Oger et al. [15] embedded the particle shifting mechanism in the ALE-SPH formulation of Vila 

[47]. More recently Colagrossi et al. [48] demonstrated that a diffusive term has to be added to 

the mass and density equations to prevent too large volume particle variations. Notable is the 

work of Michel et al. [49] where a hybrid scheme ALE-SPH where the shifted and non-shifted 

ALE schemes is proposed. 

Herein, a WCSPH scheme is proposed based on the consistent ALE formulation Vila [47] that 

preserves not only a near isotropic spacing and therefore, near to theoretical convergence rate 

provided by the kernel function, but also maintains stability in terms of volume. This is achieved 

by utilising the iterative shifting procedure of Vacondio and Rogers [50] to obtain the arbitrary 

velocity which results in a near isotropic particle distribution in space and thus, a constant 

volume field. 

5.2 Numerical scheme 

5.2.1 The Arbitrary Lagrangian-Eulerian framework 

In order to establish the conservation laws of mass and momentum in an ALE formulation, the 

rate of change of a field function over a volume Vt bounded by a closed surface St is 

considered. It is assumed that the volume moves in time t with a velocity u = u (x, t) and the 

volume is constant, i.e. a material volume. It can be shown that the material or total time 

derivative of the integral of the field function f = f (x, t) over the volume in time is given by the 

Reynolds transport theorem [51],  



( , )
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d f t
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where Vc ≡ Vt is an Eulerian volume fixed in space which coincides with the material volume and 

Sc ≡ St is the equivalent of a fixed Eulerian surface at time t, u is the velocity vector and n the 

outward unit normal vector to the surface St. By using the Gauss theorem, the last term in the 

right-hand side of Equation 18 can be written as, 

  ( , )

c cS V

f t dS f dV    x u n u  (19)

which lead to the alternative Reynolds transport theorem,  

  
( , )

( , )

t cV V

d f t
f t dV f dV

dt t

 
  

 
 

x
x u  (20)

The first term of the integral in the right-hand side of (3) is the local time derivative and the 

second term represents the flux of f in the Eulerian control volume. In a differential form, 

Equation 20 takes the familiar form of,   

  
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f
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x x
u  (21)

In an ALE context, the characterising velocity is no longer the material velocity, but an arbitrary 

particle velocity denoted by û . Thus Equation 20 takes the following form, 

  
( , )

ˆ( , )

tV Vt

d f t
f t dV f dV

dt t

 
  

 
 

x
x u  (22)

This implies that St = ∂Vt and mass flux exchange is taking place in t with surrounding volumes. 

By substituting the local time derivative in the Euler equations of motion and collecting the 

terms, one can write,  

  ˆ 0

t tV V

d
dV dV

dt
      Φ F u Φ  (23)

where Φ and F is defined as the conservative (state) variables and the convective flux tensor 

and pressure respectively,  

 ,
P

 

 

   
    

    

u
Φ F

u u u I
 (24)

where ρ is the density, P is the pressure and I the unit tensor. 

Finally, the differential form of Euler equations in conservative ALE form reads, 

  
( )

ˆ 0
d V

V
dt

    
Φ

F u Φ  (25)

5.2.2 The ALE weakly compressible SPH formalism 

Similar to the work of Vila [47], a conservative symmetric formulation is sought for the 

discretisation of the right hand side of Equation 25. Using the identity,  

      ˆ ˆ ˆ 1          F u Φ F u Φ F u Φ  (26)

the SPH discrete form of Equation 25 becomes [15], 

  
( )

ˆ ˆi i

i i i i j j j ij j

j

d V
V W V

dt
       

Φ
F u Φ F u Φ  (27)
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where subscript i and j denote the interpolating and neighbouring particles and subscripts ij the 

difference between the interpolating and neighbouring particles. From Equation 22, the 

evolution of particle volume can be written as, 

  ˆ ˆi

i j i ij j

j

dV
V W V

dt
   u u  (28)

Note, the temporal evolution of a discrete particle in space now reads, 

 ˆ ( , )
d

t
dt


x

u x  (29)

Finally, the fully discretised Euler equations in a weakly compressible ALE SPH formalism read, 

  

ˆ

ˆ ˆ

ˆ( )

ˆ

i

i

i

i j i ij j

j

i i ii i

i ij j

j j j j

d

dt

dV
V W V

dt

d V
V W V

dt



  

   
      





x
u

u u

F u ΦΦ

F u Φ

 (30)

To recover the Navier-Stokes equation the viscous forces in Equation 30 are discretised using 

the Morris operator [8] defined by,  


2

2
ij

i ij ij j

j ij

V V W V
r

   
r

u u  (31)

As in the Lagrangian weakly compressible SPH formalism, a sub-closure model is used to link 

pressure to density by the Morris equation as, 

  2

0 0P c     (32)

allowing for a 1% variation in density by the following relationship ρ = m / V.  The speed of 

sound co is defined as c0 ≥ 10Umax where Umax is the maximum fluid velocity of the domain. 

The time integration scheme is an explicit predictor-corrector scheme [52] bounded by the CFL 

condition [53]. Note that, the CFL condition uses the physical velocity u and not the arbitrary 

velocity. 

Finally, two kernels have been used in this work to demonstrate second- and fourth-order 

convergence rates, the Wendland kernel defined as,  



4

( , ) 1 2 1
2

d

r r
W r h a

h h

   
     

   
 (33)

with r = |x - x'| and a normalisation constant ad = 7/4hπ2 and the compactly supported Gaussian 

G4 as,  


2

2 2

2
( , ) 1 exp( / )

2
d

r
W q h a r h

h

 
   

 
 (34)

where q = |x - x'| / h and a normalisation constant ad = 2/πh2, respectively. 
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5.3 Arbitrary velocity based on an iterative shifting procedure 

In order to reduce the spatial anisotropy of particles by forming coherent particle structures as 

the accuracy of the Lagrangian discretisation scheme is increasing, a number of methodologies 

have been developed [7, 37, 39, 54]. 

In general, these schemes update the position of particle i by, 

 1 1

,

n n

s i i i  x x x  (35)

where the term δx is a shifting distance and the subscript s the shifted final particle position. In 

the diffusion-based scheme of Lind et al. [37] the shifting distance is a function of the gradient of 

the concentration gradient such as, 

 2

i iAh C   x  (36)

where A is problem dependent constant and taken equal to 0.2 and Ci is simply the derivative 

of the zeroth moment defined as,  

 i

j ij

j

dC
V W

dt
   (37)

To overcome the conservation and consistency issues associated with the Fickian shifting, Oger 

et al. [15] and lately Colagrossi et al. [48] embedded a shifting procedure within an ALE 

scheme. However, Equation 35 was solved explicitly, with no control adopted on the particle 

distribution generated by the shifting correction. 

Vacondio and Rogers [50] and more recently Fourtakas et al. [55], recognised that the 

correction δxi calculated using Equation 36, does not guarantee that the obtained particle 

distribution guarantee sufficient accuracy for SPH spatial interpolation at the next time step. 

They proposed an iterative shifting procedure to minimise the error of the SPH spatial 

interpolation. When particle position needed to be corrected the diffusion shifting was applied 

iteratively until, a minimum predefined limit in Ci and the pre-defined error associated with the 

SPH approximation of a polynomial function has been reached.  

This can be demonstrated by considering the SPH kernel derivative approximation of a field 

function f defined in x of a particle i in a discrete form, as, 



( )
( )

( )
( ) ... ( )

iji

i j

j

ij ni

j i

j

Wf
f V

Wf
V O h


 

 


  

 





x
x

x x

x
x x

x x

 (38)

In Equation 38, as Ci → 0 the first term on the right-hand side vanishes which is the major 

source of error in the SPH approximation. The second term shows the error associated with the 

ability of the kernel derivative to approximate polynomials up to nth order as discussed by 

Fourtakas et al. [55]. For details of the iterative shifting procedure the reader is directed to 

Vacondio and Rogers [50] and Fourtakas et al. [55]. 

Although the iterative shifting procedure reduces the spatial discretisation error, it deems the 

scheme non-conservative as particles are disturbed from their Lagrangian trajectories. To 

overcome the issue of conservation and consistency the ALE scheme is adopted in this report. 

Similar to Colagrossi et al. [48] the scheme does not employ Riemann solvers with an implicit 

diffusion of fluxes. 

Herein, the arbitrary velocity is defined as, 
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 ˆ ( , ) it
t






x
u x  (39)

which is simply the shifting velocity of the iterative shifting procedure. The term δxi is measured 

as the difference of the final shifted position from the original position of particle i. Assuming an 

initial domain discretised in equal volumes, the iterative shifting arbitrary velocity guarantees 

that the volume flux between particles is minimised. As with Vacondio and Rogers [50] the 

iterative shifting arbitrary velocity can be calculated only when the threshold error is exceeded in 

Ci or when the discretisation error of the gradient of a polynomial reaches an upper limit as 

with Fourtakas et al. [55]. 

5.4 Numerical results 

5.4.1 Taylor-Green vortices 

The Taylor-Green vortices test case consists of an unbounded periodic 2-D domain. The 

domain is initialised by a smoothed distribution of counter rotating vortices with temporal and 

spatial decay.  

The solution of Equation 23 is for a strictly incompressible fluid. The test case has been used 

extensively in the past to test the effectiveness of shifting methodologies and algorithms [7, 15, 

37, 42, 56]. The square domain with dimensions of 1 m × 1 m is initialised with the following 

velocity and pressure field,  



   

   

    
2

cos 2 sin 2

sin 2 cos 2

cos 4 cos 4
2

f

f

f

u e x y

v e x y

e
p x y

 

 

 

 



  

 (40)

where Re/8 2tf  . The Reynolds number takes the usual form of Re /LU  , where 

U = 2 m/s is the maximum initial velocity at t = 0 sec, L is the characteristic length and the 

dynamic viscosity is μ = 0.01 Pa.s. The initial density was set to ρ0 = 1.0 kg/m3 and particle 

spacing of dx = 0.025 m using the Wendland kernel of Equation 33 with a smoothing length of 

h = 2.0dx. Herein, the initial particle distribution is Cartesian. At t = 2.0 sec, Figure 20(a), shows 

the relative error in the velocity magnitude defined as,  

 SPHu U
u

U


  (41)

for the ALE formulation with purely Lagrangian transport velocity, by setting the arbitrary velocity 

equal to the physical velocity ˆu u   thus, recovering a constant particle mass. In  Figure 20(b), 

the arbitrary velocity in the ALE scheme is computed by using one iteration of the Fickian 

particle shifting algorithm in a similar manner to Colagrossi et al. [48]. Finally, Figure 20(c) 

shows the relative error in the velocity magnitude for the proposed ALE with iterative shifting 

(ALE-IS). Clearly, the error in the latter is significantly smaller by more than an order of 

magnitude than the ALE scheme with one iteration or the ALE scheme using a Lagrangian 

transport velocity. 

Similar results are shown on the right hand side of Figure 20 for the relative error in the 

pressure field using the equivalent form of Equation 41. It should be noted that the pressure 

field of the ALE scheme with Lagrangian transport velocity and ALE with one iteration has 

become unstable. 
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(a) (a) 

  

(b) (b) 

  

(c) (c) 

Figure 20: Taylor-Green vortices relative error in the velocity magnitude (left) and 

pressure (right) at t = 2.0 sec with Re = 100 and particle resolution of dx = 0.025 m for (a) 

the ALE scheme with a Lagrangian transport velocity, (b) the ALE scheme with one 

shifting iteration and (c) the proposed ALE-IS scheme 

An interesting result is the volume variations obtained using the equivalent of Equation 41 

presented as a volume variation percentage and the particle distribution at t = 2.0 sec for the 

two ALE variants. Figure 21(a) and Figure 21(b) shows the percentage of volume variations for 

the ALE scheme with one shifting iteration and the proposed ALE-IS scheme. 

In Figure 21(a), one can observe large volume fluxes in regions of high strain rate from the 

surrounding particles in the ALE scheme with one shifting iteration, also evident by the particle 

distribution. Note: no diffusive terms have been used in the governing equations for any of the 

ALE variants. The findings are similar to the work of Colagrossi et al. [48] that observed large 

volume fluxes which deemed the SPH operators inaccurate in the absence of numerical 

diffusion terms. In contrast, the ALE-IS scheme in Figure 21(b) shows an almost constant 

volume field due to the iterative shifting algorithm. 
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(a) 

 

(b) 

Figure 21: Taylor-Green vortices percentage of volume variations and spatial particle 

distribution for (a) the ALE scheme with one shifting iteration and (b) the proposed 

ALE-IS scheme, at t = 2.0 sec with Re = 100 

A convergence study has been conducted to assess the accuracy and convergence 

characteristics of the proposed ALE-IS scheme. Figure 22 shows the spatial convergence rates 

for the Taylor-Green vortices using the Wendland kernel of Equation 33. A convergence rate of 

1.9 is achieved for the velocity and pressure near the theoretical convergence rate of the kernel. 

 

Figure 22: Spatial convergence rates for the Taylor-Green vortices using the Wendland 

kernel at t = 2.0 sec 
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5.4.2 Inviscid wall bounded vortex 

As described by Vacondio and Rogers [50], a bounded weakly compressible vortex, is 

simulated in a circular domain. The initial density of the particle is ρ0 = 1.0 kg/m3 with an 

asymptotic density of ρM = 1.01 kg/m3. The desired weakly compressibility of the domain is 

achieved by setting the appropriate artificial speed of sound, in this case c0 = 1.0 m/s using the 

Morris equation of state of Equation 32. The domain radius is 0.7 m with an initial particle 

spacing of dx = 0.01 m using the Wendland kernel of Equation 33 with a smoothing length of 

h = 2.0dx. 

In the absence of a high order boundary condition, the appropriate number rows of dummy 

particles are used to represent the solid wall where the analytical velocity is imposed as, 

 0

2

0

0

0

2
( )

r

r

r

r
u r c e

r


 




 

  (42)

where uθ is the velocity in cylindrical coordinates r0 = 0.1 m with the appropriate density and 

pressure [50]. 

In the Taylor-Green test case, the initial particle distribution was over a Cartesian grid. To 

demonstrate the effectiveness of the proposed ALE-IS scheme, an initial random particle 

distribution is used for the inviscid vortex as shown in Figure 23(a) with the final distribution at 

t = 5.0 sec shown in Figure 23(b). Although, the final distribution is not Cartesian, the ALE-IS 

error and convergence characteristics follow the ideal theoretical convergence rates as will be 

shown shortly. 

  

(a) (b) 

Figure 23: (a) Initial particle distribution and final particle distribution after t = 5.0 

seconds for the inviscid vortex test case 

Figure 24(a), (b) and (c) shows the relative error in velocity magnitude, pressure and volume 

respectively for the ALE scheme with one shifting iteration at time t = 2.2 sec before going 

unstable. Notably, the error in velocity and pressure is unacceptable, as the volume variations 

seen in Figure 24(c) resulted in cluster particles. This result is in-line with the Taylor-Green 

vortices (Section 5.4.1) where similar behaviour was observed originating from the clustered 

particles, which deem the simulation inaccurate. 

In contrast, Figure 24(d), (e) and (f) shows the relative error in velocity magnitude, pressure and 

volume respectively for the proposed ALE-IS scheme at t = 5.0 sec. Clearly, the improvement 

over the ALE scheme with one shifting iteration is substantial. Note: the initial particle 

distribution was random which would incur large errors in the SPH gradient. Nevertheless, by 
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using the ALE-IS scheme, at the end of the simulation, the particle distribution is near isotropic 

with less than 0.01 % volume variation. 

  

(a) (d) 

  

(b) (e) 

  

(c) (f) 

Figure 24: Inviscid vortex relative error in (a, e) velocity magnitude (b. f) the pressure and 

(c, f) the volume at t = 2.2 sec with particle resolution of dx = 0.01 using the Wendland 

kernel with the ALE scheme with one shifting iteration (left) and the proposed ALE-IS 

scheme (right) 
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To evaluate the error and convergence characteristics of the ALE-IS scheme with arbitrary 

distributed particles, a spatial convergence study has been conducted. 

 

(a) 

 

(b) 

Figure 25: Spatial convergence rates for the bounded inviscid vortex using (a) the 

Wendland kernel and (b) the Gaussian G4 kernel 

The velocity and pressure convergence rates is examined for two different kernels. Firstly, the 

Wendland kernel of Equation 33 is used with a theoretical rate of convergence of two and 

secondly the Gaussian G4 kernel of Equation 34 is used with a theoretical rate of convergence 

of four and a support radius of 4h. As expected and demonstrated in Figure 22 for the 

Wendland kernel a rate of convergence of 1.9 is shown in Figure 25(a). Most importantly, the 

results for the Gaussian kernel are shown in Figure 25(b) with a convergence rate of 3.9 near 

the theoretical convergence of the 4th order accurate Gaussian kernel. The above convergence 

rates demonstrate the accuracy that can be achieved using the proposed ALE-IS scheme. 
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6 Conclusions 
The incompressible Smoothed Particle Hydrodynamics (ISPH) scheme is known to have noise-

free pressures and kinematics for internal and free-surface flows. However, the non-uniformity 

of particles restricts the accuracy and, consequently, the convergence of the solution to lower 

than the theoretical second-order convergence in smoothing length.   

The recent developments of high-order incompressible SPH within an Eulerian framework of 

Lind and Stansby [6] removed the error associated with non-uniformity of particles, and 

demonstrated near ideal convergence characteristics. However, those improvements were only 

applicable to open periodic domains, and the particle distribution was restricted to a Cartesian 

arrangement only, so arbitrary geometries were not possible.  

This novel and original research at the University of Manchester has extended the 

incompressible SPH scheme to bounded domains, so that it can be applied to arbitrary 

geometries, as well as multi-phase and multiple continua flows, through the following SPH 

developments: 

 Wall bounded arbitrary geometries: An iterative particle shifting methodology applicable 

to the Eulerian SPH scheme has been developed where the iterative scheme is only applied 

once, in the beginning of the simulation as a pre-processing step. The iterative shifting 

scheme comprises a two-step shifting approach that minimise the particle shifting distance. 

A polynomial field function of the same order as the kernel with a tolerance over a regular 

distribution of 10% must also be satisfied before the iteration procedure is considered to 

have converged.  The effectiveness of the iterative shifting scheme for arbitrary wall 

bounded domains has been demonstrated using a number of 3-D Poiseuille flow test cases 

in circular and non-circular cross-sections with close to second-order rate of convergence.  

 Higher-order boundary conditions: A necessity for higher order convergence rates is the 

use of a higher order wall boundary condition. Therefore, a novel high-order accurate 

extrapolation technique for the enforcement of wall and open boundaries to high-order 

accuracy with Eulerian ISPH was developed and validated. Fourth-order convergence was 

demonstrated for the 3-D spiral annular flow field smoothing kernel interpolations and third-

order spatial accuracy was demonstrated for full 3-D simulations of axial flow through a 

cylindrical annulus. 

 Arbitrary Lagrangian-Eulerian (ALE) formulation: A consistent ALE SPH scheme was 

developed in order to attain the Lagrangian characteristics of SPH to make it applicable to 

multi-phase flows. This ensures near isotropic particle spacing and therefore, near to 

theoretical convergence rates without an instability developing due to mass flux from the 

ALE formulation with no corrections needed to increase the accuracy of the SPH discrete 

operators.  The scheme has been validated for unbounded and bounded domains using the 

Taylor-Green vortices and inviscid vortex test cases, and shows large improvements in 

accuracy and stability compared to other ALE schemes. A spatial convergence study has 

also been performed where second- and fourth-order convergence rates have been 

demonstrated. These developments are directly applicable to, and have been developed to 

accommodate, interfacial boiling flows. 

These innovative SPH developments in terms of accuracy, convergence rates and arbitrary 

geometries mean that this meshless method could be applied to nuclear thermal hydraulics in 

realistic geometries. This has the potential to reduce the time and cost associated with nuclear 

thermal hydraulic analyses in the future. 
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