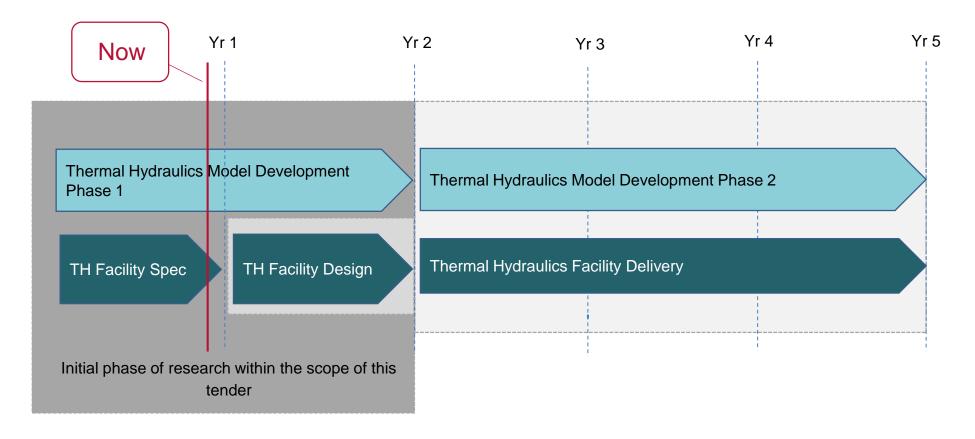


Project Forte – Reactor Thermal Hydraulics

Carolyn Howlett

19th February 2018


Project FORTE

- Digital Reactor Design Thermal Hydraulics
- First phase of work originating from the NIRAB recommendations.
- Contents of presentation:
 - Reminder of programme and team;
 - First phase objectives;
 - Challenges;
 - Approach;
 - Critical Review Tasks;
 - Specification Tasks.

Progress Through Original Plan

5 year Integrated Programme of R&D for Reactor Thermal Hydraulics

Thermal Hydraulics – The Team

Lead by Frazer-Nash, the team comprises 6 core members:

Thermal Hydraulics - First Phase Objectives

- Thermal Hydraulic Modelling 2 years
 - A Critical Review of the State-of-the-Art in thermal hydraulic prediction capability.
 - A Specification for an innovative thermal hydraulics modelling capability.
 - Initial Innovative Models.

- Thermal Hydraulic Test Facility 1 year
 - A Critical Review of the State-of-the-Art in thermal hydraulic test facilities worldwide.
 - A Specification for a UK thermal hydraulics test facility.
 - Identification of opportunities to use the facility to benefit other 'NIRAB' programmes.

The First Challenge

- State-of-the-art in thermal hydraulic modelling and test facilities, across all technologies, world-wide!
- The requirements for improvements in thermal hydraulic modelling and testing, across all technologies!

The Challenge:

Reactor Thermal Hydraulics is BIG......

.....Really, Really **BIG**.

The Second Challenge

- The UK currently has AGRs and one PWR.
- The UK will be getting more PWRs and some BWRs.
- The UK Government has stated a commitment to nuclear generation.

The Challenge:

......What Next?

Addressing the Challenges

Inclusive approach

- Advantages
 - The most complete picture;
 - Enables the work to support future decisions as the situation in the UK develops;
 - Allows the differences and similarities between different technologies to be drawn out.
- Disadvantages
 - Broad, necessitates shallow in some areas;
 - Impossible to be exhaustive.

Stakeholder Engagement

- Promotes input from all (not just those who publish);
- Gets an up-to-date picture on the highest priorities;
- Highlights differences and consensus in opinion.

Test Facility Critical Review

- Huge scope has identified significant facilities throughout the world, particularly in: Canada, China,
 France, Germany, India, Italy, Japan, Korea, Switzerland, Russia and the USA.
- In light water technologies alone we identified over 25 integral test facilities and over 60 separate effects facilities still in operation.
- For GenIV technologies the lists are also extensive.
- There are a lot of test facilities world-wide but, despite this, the need for testing to support model development, design and safety system substantiation still remains a pressing requirement.
- The UK does not have a major nuclear thermal hydraulics test facility.
 - Test rigs that exist in the UK are privately owned and designed to answer a specific question for a specific reactor design.
 - ▶ Testing for research purposes is carried out abroad, e.g. India

Modelling Critical Review

- Huge scope encompassing:
 - Tools including: system codes, subchannel codes, 'standard' CFD, 'advanced' CFD.
 - Thermal-hydraulic phenomena including: natural convection, turbulence, two-phase flow, particulate transport, fluid-structure interaction, conjugate heat transfer, unsteady flows.
 - Reactor challenges: Fuel heat transfer, mixing plenums, whole system, multi-physics, multi-scale, alternative fluids.
 - Current best practice: scaling, validation/ benchmarking databases, uncertainty evaluation.
 - Current/future state-of-the-art: High performance computing, AI/Machine learning, DNS, technology transfer from other industries.
- Wide range of tools available and used.
- The thermal hydraulic complexity of plants places a high demand on 'first principles' tools.
- Rapid pace of development in advanced modelling tools.

User Requirements (Testing and Modelling)

- What do people want/need?
- Large stakeholder engagement activity, including 59 different organisations, encompassing:
 - Academic researchers;
 - Reactor designers (GenIII and GenIV);
 - Fuel Vendors;
 - Regulator;
 - UK Reactor Operator;
 - Code Developers;
 - Providers of technical services.
- Overall we were encouraged by the level of engagement.
 - Level of engagement was very good from light water technologies.
 - Level of engagement was mixed from the GenIV technologies.

What next - Facility

- Although this project started with the idea that we were developing a specification for a test rig, the work has developed.
- The emphasis is now on a multi-functional space which is suitable to house thermal hydraulic test rigs relating to different technologies. A nuclear thermal hydraulics test 'centre'.
- Our current understanding is that this specification and the business case (which is being developed in parallel – not by us) will be reviewed in the context of the budget and an ITT will go out for the design and build.

What Next – Model Development

- We have a very large number of requirements.
- Currently in the process of developing and down-selecting requirements.
- We are planning a workshop for April to generate and discuss ideas for addressing the challenges.

A specification for further work will be developed, which we are assuming will form the basis of Phase 2 of this task.

Timescales

Test Centre Specification due to be completed very soon (end of March).

- Modelling Specification due to be completed end of June 2018.
- Phase 1 Model Development work due to be completed in March 2019.

Carolyn Howlett, Principal Consultant Email:c.howlett@fnc.co.uk

www.fnc.co.uk